Kinetic analysis of the 5' splice junction hydrolysis of a group II intron promoted by domain 5.

نویسندگان

  • J S Franzen
  • M Zhang
  • C L Peebles
چکیده

The 5' splice junction (5'SJ) of Group II intron transcripts is subject to a specific hydrolysis reaction (SJH). This reaction occurs either within a single transcript containing intron sequences through domain 5 (D5) or by cooperation of two separate transcripts, one bearing the 5'SJ and another contributing D5 (1). In this report we describe the latter reaction in terms of its kinetic parameters. A minimal D5 RNA of 36 nts (GGD5) was sufficient to promote SJH of a second transcript containing the 5' exon plus intron domains 1, 2, and 3 (E1:123). Equimolar production of two RNAs, the 5' exon (E1) and an intron fragment containing domains 1, 2, and 3 (123) was observed. The kinetic coefficients were evaluated by an excess GGD5 approach. The apparent Km was complex, varying with GGD5 concentration. This behavior indicates heterogeneity in E1:123 with respect to GGD5 binding. The binding heterogeneity may result from formation of E1:123 dimers or from nicks in some molecules of each E1:123 preparation. The heterogeneity was always evident, but to a variable degree, regardless of the procedure by which E1:123 was isolated. The system may be described in terms of parameters analogous to kcat and Km. At infinite dilution of GGD5, the characterizing values were: k2 degrees (the analog of kcat) = 0.0055 min-1 and Km degrees = 0.22 microM. In the limit of GGD5 saturation, the values were: k2 infinity = 0.012 min-1 and Km infinity = 4.5 microM. A natural variant D5, representing the sequence from intron 1 of the yeast cytochrome-b gene, was also functional in SJH. This GGD5b1 was governed by similar Km degrees and Km infinity values, but was only one-third as active over the entire D5 concentration range. A different D5 isomer was entirely ineffective for SJH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of genetic diversity among and within Iranian chamomile populations using semi random intron-exon splice junction (ISJ) markers

Chamomile (Matricaria chamomilla), an important medicinal plant belonging to the Asteraceae family, has a wide distribution in Iran and other parts of the world. The medicinal and pharmacological effects of chamomile are mainly associated with its essential oil content and it is widely used in food, cosmetics and pharmaceutical industries. Despite its wide geographical distribution in Iran, lit...

متن کامل

Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem–loop motif of a transcriptional terminator

Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus h...

متن کامل

Circularization pathway of a bacterial group II intron.

Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusi...

متن کامل

Domain 5 interacts with domain 6 and influences the second transesterification reaction of group II intron self-splicing.

The role of domain 5 (d5) from the self-splicing group II intron 5 gamma of the COXI gene of yeast mitochondrial DNA in branching and 3' splice site utilization has been studied using a substrate transcript lacking d5 (delta d5 RNA). This RNA is completely unreactive in vitro, but releases 5' exon by hydrolysis under various reaction conditions when d5 RNA is added in trans. Under an extreme re...

متن کامل

Co(II) AND Cu(II) - PROMOTED BASE HYDROLYSIS OF 2-CYANO-l, lO-PHENANTHROLINE

Co(II) and Cu(II) promoted base hydrolysis of 2-cyano, 1, lO-phenanthroline was studied. At 298.2°K, Cu(II) reaction is more efficient (by a factor of 20) than either Co(ll) and its analogues Ni(II) in promoting base hydrolysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 1993